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Biomorphic networks: Approach to invariant 
feature extraction and segmentation for ATR* 

A. S. Baek and N. H. Farhat 
Department of Electrical Engineering 

University of Pennsylvania 
Philadelphia, PA 19104 

ABSTRACT 

Invariant features in two dimensional binary images are extracted in a single layer network of locally coupled spiking 
(pulsating) model neurons with prescribed synapto-dendritic response. The feature vector for an image is represented 
as invariant structure in the aggregate histogram of interspike intervals obtained by computing time intervals between 
successive spikes produced from each neuron over a given period of time and combining such intervals from all neurons 
in the network into a histogram. Simulation results show that the feature vectors are more pattern-specific and 
invariant under translation, rotation, and change in scale or intensity than achieved in earlier work. We also describe 
an application of such networks to segmentation of line (edge-enhanced or sihlouette) images. The biomorphic spiking 
network's capabilities in segmentation and invariant feature extraction may prove to be, when they are combined, 
valuable in Automated Target Recognition (ATR) and other automated object recognition systems. 

Keywords: Spiking neural networks, biomorphic neuron, feature extraction, distortion invariance, segmentation, 
automated object recognition 

1. INTRODUCTION 

Invariant feature extraction plays a central role in designing automatic object recognition systems, whose applications 
permeate a diverse range of fields that include radar, sonar, optical character recognition, autonomous vision machines 
for use in space exploration, robotics, and manufacturing. The human visual system recognizes objects remarkably 
well from two dimensional images cast on the retina, even when these images are distorted by various factors such 
as change in the distance and orientation of the object, light illumination level, shading and background clutter. 
Understanding and duplicating this exceptional invariant recognition ability of the visual system is valuable for 
successful development of advanced automatic target recognition (ATR) systems. 

To this end artificial neural network models based on neuronal firing rate have been explored and applied in the 
past, with various degrees of success, to both the feature extraction and the recognition aspects of ATR [1]. It is 
however becoming increasingly clear that the temporal aspects of brain function manifested in the spiking nature of 
neural activity and the relative timing of spikes may play an important role in distortion invariant feature-extraction, 
feature-binding and other higher-level brain functions. 

In this paper we will present methods for invariant feature extraction and image segmentationin using a network 
of biomorphic spiking neurons that extends and improves on earlier published work. Invariant features in two 
dimensional binary images are extracted in a single layer network of locally coupled spiking (pulsating) neurons 
that include synapto-dendritic processing. The feature vector for an image emerges as invariant structure in the 
aggregate histogram of interspike intervals, which is formed by computing time intervals between successive spikes 
produced from each neuron over a given period of time and combining such intervals from all neurons in the network 
into a histogram. The simulation results presented here show that the feature vectors are object-specific and highly 
invariant under translation, rotation, and change in scale or intensity. The results suggest that the combined process 

* Based in part on an oral presentation given given at the 1997 OSA Annual Meeting, Long Beach, CA Oct. 1997. 



of the segmentation and feature extraction from segmented images may provide useful basis in designing ATR and 
other autonomous recognition systems. 

Current techniques for distortion invariant pattern recognition use integral transforms, algebraic moments, or 
perceptron-like neural networks with learning algorithms [2]. These techniques demand, however, extensive com- 
putational resource and are susceptible to spatial noise in the input image. Recently, a novel pulse-coupled neural 
network, which could generate invariant signatures of images of simple canonical patterns under translation, rotation, 
scale and intensity changes, was described in [3]. Although our method is an extension of this earlier work in that 
it also uses a pulse-coupled neural network and employs concepts developed in [3] and [4], there is a fundamental 
difference between the network dynamics in the two methods. The method presented in [3] is based on the cortical 
model of synchronization of neural temporal activity developed in [4] but uses moderate-to-weak linking strengths 
to induce phase-locked firing states of neurons. Also in [3], the spatial structure of the test patterns (a cross and 
a tee), made of blocks with each block containing 11 x 11 pixels and a distinctive gray-scale intensity level, was 
encoded in the phase-locking pattern of output spikes from neurons. In contrast, the method described here is less 
"corticomorphic". It is based on firing rate encoding, which is predominantly observed in sensory nervous systems, 
rather than phase-locking, and is suited for processing binary line images. This different encoding scheme arises, as 
explained below, from the opposite relationship between the time constants of the synaptic response function and the 
membrane potential (pulse generator) that we use as compared to [3]. As a result, the method appears to produce 
invariant feature vectors that are more input pattern specific than in [3], which is a desirable prerequisite for accurate 
classification. Also, its ability to extract invariant features of binary line images is an attractive attribute because 
edge-enhancement and line extraction are standard operations in pattern recognition. 

In Section 4, we demonstrate the ablity of the spiking neural networks in segmentation of line images (eg. 
silhouettes or edge enhanced images) of model objects. Once characteristic segments of a"line image are obtained, 
each segment may be processed by a biomorphic spiking network, similar to the one described in Section 2, to produce 
a set of histograms of interspike intervals, which contain invariant features that are specific to the line image. The 
resulting set of invariant features, which belong to the respective features of the image, can then be regarded as a 
composite invariant feature vector that represents the entire line image. 

2. THE NETWORK 

In the invariant feature extraction system presented here, a basic image that consists of a 12 x 12 binary pixel array 
is fed to a single layer network that consists of spiking neurons arranged in the 12 x 12 array format. The model 
neuron used in the network is of the integrate-and-fire (I&F) variety , similar to that used in [3]-[5], and is regarded as 
biomorphic in that it contains a simplified model of the dendritic-tree processing in biological neurons, as explained 
below. 

The dynamics of the neuron can be summarized as follows, refering to Fig.l. When the exponentially rising 
membrane potential, AVm(t), of the neuron at (i,j) reaches the time-varying threshold, Vtf(t), it instantaneously 
drops to the resting membrane potential Vrest and at the same time a spike (action potential) is generated [6]. The 
time-varying threshold is represented as 

Vff(t) = V0-Uij(t) (1) 

where V0 is constant and Uij{t), as defined below in Eqn. (3), is a signal that results from the joint actions of 
synaptic inputs and the intensity of the image. This process of exponential rise and instantaneous drop of the 
membrane potential repeats, generating successive spikes whose timing is modulated by the threshold voltage. Note 
that lowering the threshold causes the neuron to fire faster, because it takes less time to build the membrane potential 
from the resting potential to the threshold. 

In an effort to emulate the signal processing that occurs in the dendritic tree of biological neurons, the model 
neuron is given a simplified homogeneous synapto-dendritic response function modeled as an impulse response func- 
tion, which approximates the change in membrane potential (depolarization) at the neuron's hillock (i.e, the site 
of output spike generation), in response to a single spike on its dendritic tree. We use an exponentially decaying 
function for the synapto-dendritic response, given by 

h(t) = h0exp(-t/r) (2) 



rth V^(t) = V0-Sij(t) 

V o :5 V 

AVm(t) = E (l-exp(-tV)) 
E =V0 -e =4.8V 

Vrest = 1 V 

Sij(t) = Iij(l+ßPij(t)) 

Pij(t) = STij*h(t) 

h(t) h Qexp( -t / x) 

(j. = 1 msec (membrane time constant) 

T = 12 msec (synapto-dendritic time constant) 

Figure 1. The dynamics of the biomorphic spiking neuron and parameters used in numerical simulations. 

where r is the time constant of the response. Also, the model neuron in the network receives the intensity value of 
the image at the corresponding coordinates, which modulates the signal produced from synaptic inputs in a nonlinear 
manner similar to that in [3] and [4], as further explained below. 

Using the same notation as in [3] and [4], the signal, {/„■(*), which is produced from a nonlinear combination 
of the external input and synaptic inputs, is determined by Eqn. (3) with i and j representing the coordinates of 
both the pixel and the neuron in the 12 x 12 array. The signal Pij(t), as defined in Eqn. (4), is a convolution of 
the synapto-dendritic response function and the input spike train impinging on the neuron at (i,j). The input spike 
train is represented below as a sum of delta functions with m and n representing the coordinates of the sending 
neuron and k representing the spike generation time. 

IijXil + ßPijit)) 

STij * h(t) 

Sij(t)    = 

Pij(t)    = 

(3) 

(4) 

(5) 
mnk 

The signal Sy-(i) modulates the threshold voltage of the neuron at (i,j), as shown in Eqn. (1), and this will determine 
the firing times. The departure of the membrane potential Vm from the resting value Vrest can be expressed as: 

A7m(t)    = 

E   = 

E{1- 

V0-e 

exp(--)) 
A* 

(6) 

(7) 

where V0 and e are given values of 5 and 0.2 volts, respectively in the simulations below. When a spike is elicited, the 
membrane potential Vm instantaneously drops to the resting potential Vrest and begins to rise exponentially towards 
the time-varying threshold, Vffit) as depicted in Fig.l. 

Attention is drawn to the relationship between the time constant \i of the exponential membrane build-up and 
the time constant r of the synapto-dendritic response function. In contrast to the practice in [3] in which the time 
constant of the synapto-dendritic response is shorter than that of the membrane dynamics (referred to as pulse 
generator in [3]), the time constant r of the synapto-dendritic response here is longer than the time constant \i of 
the membrane potential build-up. This alteration of the relation between the time constants produces a markedly 
different network behavior in that the prolonged synapto-dendritic response causes slow depressions in the threshold 
of a neuron, affecting its firing rate. In our simulations, the time constant r of the synapto-dendritic response function 
is 12msec, while that of the membrane potential build-up is 1msec. In contrast the time constants in [3] are 1 for 
synaptic response and 5 for the membrane threshold (pulse generator) (units were not specified). 

Another important feature of the model neuron used here, which is adopted from [3] and [4], is the nonlinear 
combination of the extrinsic input Jy- and the intrinsic input from other neurons P»j(i), as defined by Eqn. (3). The 



pixel intensity of the image modulates the signal produced from synaptic inputs. The strength of the modulation 
is controlled by the constant ß. Especially, when ly is zero, the neuron at (i,j) can not fire, because Uij(t) then 
becomes zero, according to Eqn. (3), and the neuron operates in the sub-threshold mode (the membrane potential 
saturates before reaching the threshold voltage). The value of hj = 0 effectively nullifies any effects of synaptic 
inputs on the threshold, forcing the neuron to be "silent". This nonlinear operation is similar to the biological 
situation in which inhibitory inputs proximal to the soma (cell body) may effectively nullify excitation by inputs on 
distal synapses [7]. In a complex morphological dendritic tree, this type of a selective AND-NOT like operation can 
effectively decouple subunits of the tree. 

The network architecture used is shown in Fig. 2(a). The neurons are arranged in a 12 x 12 array and a 
sample neuron in the.lower right side of the array is depicted showing its synaptic connections from its 8 nearest 
neighboring neurons. Interspike intervals of the spike train from each neuron are computed in the local interspike 
interval analyzers and the results are combined to form the aggregate interspike interval histogram. Shown in Fig. 
2(b) is the schematic of an isolated neuron with the two types of inputs, the instrinsic synaptic inputs from the 
neighboring neurons and the extrinsic pixel intensity value from the image. 

3.  SIMULATION RESULTS 

The simulations results are shown in Figs. 3, 4, and 5 with the input images and the associated aggregate (interspike 
interval histograms) ISIHs shown in the left and the right columns, respectively. Figure 3(a) shows the simulation 
result with the original image of the tee. The input image in Fig. 3(b) is a scaled, 90-degree rotated, and translated 
version of the original tee image. Figures 3(c) and (d) show the input images of the cross and the associated output 
ISIHs. Already from these simulations, one can clearly see the differences between the histograms produced from the 
tee images and from the cross images and the invariance of the histograms with image distortions. In Figs. 4(a) and (b) 
for a rectangle, the histograms are drastically different from the previous cases of the tee and the cross, highlighting 
the pattern-specificity, and the invariance is well retained for the rectangle in the distortions of scale, rotation, and 
translation. As reader might have noticed, the angles used in the simulations for the rotational invariance are confined 
to the multiples of 90 degrees, due to the limited spatial resolution. At higher spatial resolution, this restriction on 
the rotation angle can be relaxed and the rotation invariance for in-between angles will be achieved. The invariance 
with scale for a triangle is shown in Fig. 4(c) and (d). We have also examined invariance with intensity for the 
triangle, as demonstrated in Figs. 5 (a) and (b). The uniform intensity of the triangle used for Figs. 5 (a) is 10 
percent higher than that used for Figs. 5 (b). The characteristic form of the histogram for the triangle is seen to be 
retained but experiences a shift towards lower time interval region. The shift comes from the fact that the higher 
uniform image intensity lowers the thresholds of the neurons, raising the firing rate. On a relevant note, we have 
an indication from later simulations that using a synapto-dendritic response function that is more biomorphic, i.e., 
approximates the biological response more accurately [8], results in higher invariance to the distortions, especially 
the intensity change. Results from these simulations are not reported here due to space limitation. 

The invariant structure in ISIH is closely related to characteristic local features of the input pattern. For instance, 
the main feature of the triangle is the three corners. The neurons residing in these corners of the triangle and the 
vicinities have higher firing rates that are responsible for invariant structure in the ISIH, since they are connected to 
more neighboring neurons with higher activity than the neurons in the middle of edges. Such analysis carried out by 
the network is meaningful for syntactical information processing in that the input image can be implicitly segmented 
into sections that contain characteristic structural information. It is, however, important to remember that due to 
the convoluted nature of inter-neuron interactions through pulse-coupling, the invariant structure in the ISIH is also 
affected indirectly by activity of neurons that are beyond the nearest neighboring connections. Although this distal 
interaction is much weaker than the local interaction, it still seems to take a part in determining the shape of the 
ISIH. 

4.  SPIKING NETWORK FOR SEGMENTATION 

A preliminary study of the ability of biomorphic spiking networks to segment line images (i.e., silhouettes or edge 
enhanced images) of model objects was carried out. The representative results given next suggest that combining 
spiking networks for segmentation with spiking networks for invariant feature extraction may offer a viable approach 
for generating invariant features for extended objects. 
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Figure 2. (a) Schematic of the network arranged in the N x N array. A set of exemplar synaptic connections 
of a neuron from its eight neighboring neurons is shown in the lower right side of the array, with the cursive lines 
representing the connections. Interspike intervals from each neuron are computed in the local interspike interval 
analyzer and sent to the aggregate interspike interval histogram, (b) Schematic of the neuron with two types of 
inputs: synaptic inputs from its neighboring neurons and an analog input of the image intensity at the neuron's 
location. The two types of the inputs are combined in a multiplicative manner to produce a signal that influences 
the timing of action potential generation and therefore the spiking output to the synaptically connected neurons. 
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Figure 3. Simulation results with the tee and the cross demonstrating invariance with translation, rotation, and 
scale The input images and the aggregate (interspike interval histograms) ISffls from simulations are shown m the 
left and the right column, respectively, (a) The tee image, (b) A 90-degree rotated, scaled, and translated version of 
the tee in (a), (c) The cross image, (d) A scaled and translated version of the cross in (c). The time resolution ot 

the ISIHs is 0.001 msec. 

In order to obtain the input line images, test objects (two types of model aircrafts and one tank) were photographed 
using a CCD camera, then digitized and saved in gray-scale in 400 x 400 pixel format. Examples of such gray scale 
images are shown in Figs. 6(a), 7(a), and 8(a). The gray-scale images were then binarized and edge-detected to 
produce the line images as shown in Figs. 6(b), 7(b), and 8(b). In producing the line image, if the gray-scale image 
is smaller than 400 x 400, we padded the remaining pixels with zero intensity to maintain a consistent image size. 
Then the line image was fed into the biomoprhic neural network, which has the same dimensions as those ot the 
input'image format. The neurons of the network used here employed an alpha function [8] for the synapto-dendntic 
response in place of the exponential function given by Eqn.3. Note that the neurons which receive zero intensity 
from the image do not fire, because the signal Sy(i) in Eqn. (3) is zero for all such neurons. 

Figures 6(c), 7(c), and 8(c) present the simulation results with the neurons' firing rates given in gray scale, the 
synaptic weight matrix used in the simulation was circularly symmetric with a radius of 21 pixels, and had a uniform 
excitatory synaptic weight of one within the circle. In these plots, the brighter pixels indicate higher firing rates for 
the neurons located in those spots. We then varied a threshold firing rate and plotted only those pixels whose firing 
rate is above the threshold, as shown in Figs. 6(d), 7(d), and 8(d) to segment the line images into characteristic 
segments each of which can potentially be represented by an invariant ISIH with the aid of a network similar to that 
described in Section 2. The pronounced features in Fig. 5 6(d) are the engines in the rear, the tips of the wings, 
the angels at the functions of the wings and the main body, while in Fig. 7(d) they are the tail, the engines and the 
gun barrels on the wings, and the front tip. In Fig. 6(d), the biomoprhic network extracted (segmented) the most 

characteristic feature of tanks, the nozzle. 
Figures 9 and 10 show the invariance of segmenting the line images of Aircrafts 1 and 2 under translation 

rotation, and change of scale. The simulation results using images of Aircrafts 1 and 2 are shown with the input 
edge-enhanced images given on the left and the simulation results showing neurons with firing rates above a certain 
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Figure 4. Simulation results with the rectangle and the triangle demonstrating invariance with invariance of 
translation, rotation, and scaling. The input images and the aggregate ISIHs from simulations are shown in the left 
and the right columns, respectively, (a) The rectangle image, (b) A 90-degree rotated, scaled, and translated version 
of the rectangle in (a), (c) The triangle image, (d) A scaled version of the triangle in (c). 
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Figure 5. Simulation results with the triangle for intensity invariance. The input images and the aggregate ISIHs 
from simulations are shown in the left and the right columns, respectively, (a) The triangle image, (b) The triangle 

image with uniform intensity increased by 10 percent. 
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Figure 6. Segmentation of gray scale image of model Aircraft 1. (a) Gray scale image of model Aircraft 1, (b) 
The line image of the gray scale image in (a), (c) Firing rates of the biomorphic neurons with the brightest pixels 
representing the highest firing rates, (d) Plot of firing rates above a prescribed threshold. The plot shows characteristic 
segments of the aircraft, each of which maybe further analyzed by a feature extracting network to represent it by 
an invariant ISIH. The invariant histograms of the segments form an "invariant set", which can be used to represent 
the object and serve as an input to an ATR system. 

threshold in the right. In these simulations, the circularly symmetric synaptic weight matrix has two concentric 
circles with radii of 48 and 51 pixels. The matrix elements inside the inner circle with radius of 48 pixels have 
a uniform excitatory synaptic weight of one, while those between the inner and the outer circles have a uniform 
inhibitory synaptic weight of negative one. We observed that the circularly symmetric weight with a large radius 
produces better rotation invariance. When the radius decreases, the synaptic matrix delineated over the rectangular 
array loses circular symmetry and becomes a square, due to the spatial resolution limitation. Also in the simulations 
shown in Figs. 9 and 10, the inhibitory weight is used to balance off the excitatory synaptic connections and avoid 
saturation of neurons' firings. The simulation results show that robust invariance under translation, rotation, and 
scale, is achieved. 

In the above simulations involving model objects, as well as in the previous examples involving canonical objects, 
the geometrical complexities are encoded in firing rates of the neurons that reside in the corresponding locations. As 
we have seen, sections of the images that contain complicated structure become pronounced in the firing rate plot. 

5.  CONCLUSIONS 

We have described a spiking neural network that can extract invariant feature vectors of two dimensional binary line 
images based on firing rate encoding rather than encoding by phase-locking described in [3]. The difference seems 
to lead to feature vectors or signatures for binary line images that are more pattern-specific and invariant under 
translation, rotation, and change in scale or intensity than achieved in [3]. Also the simpler neuronal and network 
structures used here can be advantageous in hardware implementation for real-time processing. 

A preliminary study of the ability of biomophic spiking networks to segment line images (i.e., silhouettes or edge 
enhanced images) of model objects was also carried out. The results suggest that the the combined processing of 
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Figure 7. Segmentation of gray scale image of model Aircraft 2. (a) Gray scale image of model Aircraft 2, (b) 
The line image of the gray scale image in (a), (c) Firing rates of the biomorphic neurons with the brightest pixels 
representing the highest firing rates, (d) Plot of firing rates above threshold. The plot shows characteristic segments 
of the aircraft. 

segmentation and feature extraction, each peformed by respective spiking networks, may provide a viable approach 
for generating invariant feature vectors for extended objects, which is worthy of further investigation. 
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Figure 8. Segmentation of gray scale image of a model tank, (a) Gray scale image of a model tank, (b) The line 
image of the gray scale image in (a), (c) Firing rates of the biomorphic neurons with the brightest pixels representing 
the highest firing rates, (d) Plot of firing rates above a threshold. The plot shows a characteristic segment of the 
tank, the nozzle. 
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Figure 9. Invariant segmentation of edge-enhanced images of model Aircraft 1. The input images and the invariant 
segmented image formed by thresholding firing rates of the neurons are shown in the left and the right columns, 
respectively, (a) Segmentation of the original edge enhanced image of model Aircraft 1, (b) Segmentation of a 45- 
degree rotated and translated image of the original image shown in (a), (c) Segmentation of a 90-degree rotated image 
of the original, (d) segmentation of a 90-degree rotated, 80-percent scaled, and translated image of the original. 



(a; 
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Figure 10. Invariant segmentation of edge-enhanced images of model Aircraft 2. The input images and the invariant 
features derived from thresholding firing rates of the neurons are shown in the left and the right columns, respectively, 
(a) Segmentation of the original edge enhanced image of model Aircraft 2, (b) Segmentation of a 135-degree rotated 
and translated image of the original image shown in (a), (c) Segmentation of a translated image of the original, 
(d) Segmentation of a 90-degree rotated and 120-percent scaled image of the original. Notice a change of scale of 
a segment will not affect the ability of a spiking network of the type described in Section 2 to extract an invariant 

IHIS. 
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Abstract. Advances in understanding the neuronal code employed by cortical networks indicate 
that networks of parametrically coupled nonlinear iterative maps, each acting as a bifurcation 
processing element, furnish a potentially powerful tool for the modeling, simulation, and study of 
cortical networks and the host of higher-level processing and control functions they perform. Such 
functions are central to understanding and elucidating general principles on which the design of 
biomorphic learning and intelligent systems can be based. The networks concerned are dynamical 
in nature, in the sense that they "compute" not only with static (fixed-point) attractors but also 
with dynamic (periodic and chaotic) attractors. As such, they compute with diverse attractors, and 
utilize transitions (bifurcation) between attractors and transient chaos to carry out the functions they 
perform. An example of a dynamical network, a parametrically coupled net of logistic processing 
elements, is described and discussed together some of its behavioural attributes that are relevant to 
elucidating the possible role for coherence, bifurcation, and chaos in higher-level brain functions 
carried out by cortical networks. 

Key words: neuronal code, netlets, logistic map, dynamical computing, coherence, bifurcation, 
chaos, collapse into low-dimensional attractors. 

1.  Introduction 

Meaningful progress in learning and intelligent systems is difficult without ability 
to model and simulate cortical dynamics and the way cortical networks carry out 
the amazing cognitive and control functions we humans seem to do so effort- 
lessly well while coping and learning in a complex environment. The cortex, 
also believed to be the site of conciousness and all higher-level thought pro- 
cesses, is fundamentally a high-dimensional nonlinear dynamical system. It is 
well known that a dynamical system of dimension greater than two (N > 3) 
can exhibit in its state-space, depending on the range of its control parameters, 
all three types of primary attractors: fixed-point, periodic, and chaotic. Attrac- 
tor type neural networks in use today to model brain function, rely entirely on 
point-attractors in their operation. Therefore they can not perform any higher- 
level cortical functions that might depend on periodic or chaotic attractors or on 
bifurcations between attractors. To gain insight in cortical dynamics and in the 
general principles underlying learning and intelligence, one needs to develop a 
new class of neural net models capable of "computing" with diverse attractors, 
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and elucidate the roles of coherence (periodicity, synchronicity, phase-locking), 
bifurcation, complexity,, and chaos in the kind of analog "computations", and 
autonomous learning they may carry out. To do this meaningfully, one needs 
to consider one of the most fundamental questions in neuroscience and brain 
research today, namely the nature or identity of the neuronal code, i.e., the way 
the cortex deciphers and encodes information as it carries out cognitive, learn- 
ing, and control functions. An attempt at elucidating the neuronal code and how 
it suggests that cortical networks may be modeled, simulated, and studied with 
the help of parametrically coupled nets of logistic processing elements is given 
in Section 2. This is followed in Section 3 by description of some of the more 
interesting behavior we have observed in simulations carried out with such a net- 
work under uniform global coupling and external stimulus with spatio-temporal 
input. It is found that such networks have the capacity to "self-anneal" or col- 
lapse into stimulus (input) dependent periodic (period-m) attractors following a 
transient "chaotic" period during which the network searches its state-space for 
an associated dynamic attractor of low dimension. The network accepts naturally 
both time-varying or stationary input patterns. Moreover we find that the use of 
activity dependent nonlinear quantized coupling strengths, provides the network 
with clustering ability wherein, depending on the stimulus pattern, PEs in the 
network divide into phase-locked groups with the PEs within each group pos- 
sessing synchronized identical period-m orbits. The value of m is found to be 
the same for all clusters and the number of clusters gives the dimension of the 
periodic attractor. The implications of these findings for higher-level processing 
such as feature-binding and development of novel learning algorithms are briefly 
discussed. 

2.  The Neuronal Code 

There is much evidence, stemming from anatomical, physiological, and modeling 
work in favour of the hypothesis that the basic functional unit in the cortex is the 
neuronal assembly or netlets (see, for example, Harm et al., 1970; Annios et al., 
1970; Usher et al., 1993; Edelman, 1987; van Vreeswijk et al., 1976; Wennekers 
et al., 1995 and Wennekers and Pasemann, 1996). A netlet consists of randomly 
interconnected probabilistic neurons, and netlet behavior is described in terms 
of the activity A{n) G [0,1] which represents the fraction of neurons firing at 
any discrete integer time n (Harm et al., 1970; Annios et al., 1970; Usher et al., 
1993). Discrete-time dynamics are justified by refractoriness, and the temporal 
and spatial fine structure in neuronal activity within a netlet are considered to be 
of secondary importance and subsumed by netlet dynamics. 

We observe that plots of A(n+l) vs. A(n) typically obtained in netlet analysis, 
(Harm et al., 1970; Annios et al., 1970; Usher et al., 1993), bear remarkable 
similarity to the return map of the logistic (quadratic) map (Hilborn, 1994). This 
suggests that the basic functional unit for higher-level cortical processing could 
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be represented and modeled by a nonlinear iterative map on the unit interval and 
that networks of parametrically coupled logistic maps, resembling those studied 
also in (Farhat et al, 1996; Perez et al., 1989 and Bertille, 1990), can be used to 
model and investigate cortical dynamics and therefore higher-level brain function. 
Similar work on coupled map lattices was carried out by Cratchfield and Kaneko 
(1987) and Kaneko (1993). The state-space orbits or trajectories X(n) produced 
by the logistic map, like other nonlinear mapping on the unit interval, are known 
to exhibit periodic (period-m) orbits, chaotic orbits, and bifurcation between them 
depending on the value of the control or bifurcation parameter ji of the map. The 
control parameter can be made, for example, as in (Farhat et al., 1996), to be the 
input or driving signal of the map resulting in a parametrically driven logistic 
processing element. One can expect netlets to behave in a like manner where 
the activity A{n), analogous to X(n) of the logistic map, would exhibit similar 
complex orbits. Indeed, such behavior has been observed in some of the netlet 
models studied (Wennekers and Pasemann, 1996). What can be quite significant, 
is that periodicity, bifurcation, and chaos can emerge on the driven netlet level 
despite the well known imprecision of neuronal firing. This picture goes some 
way towards elucidating the neuronal code and the way brain development and 
evolution succeeded in getting precise (repeatable) higher-level cortical functions 
from relatively imprecise neural wetware. It provides a plausible answer to an 
important question in neuroscience, namely how coherence, synchronicity, phase- 
locking, and deterministic chaos can operate on the netlet and cognitive levels 
despite the imprecise nature of neuronal firing. 

Work described in this paper is therefore based on the novel and intriguing 
preposition that the basic functional unit for higher-level processing in cortical 
networks can be modeled by a bifurcation processing element (PE) like the para- 
metrically driven logistic map (Farhat et al., 1995) or any other one-dimensional 
driven map on the unit interval. The important attribute of such a PE, which 
distinguishes it from sigmoidal processing elements (sigmoidal model neurons) 
used extensively in present day neural networks, is the complex way it encodes 
information it receives in the form of modulation of its control parameter caused 
by inputs from other PEs in a network. (The behavior of a bifurcation PE is best 
described by a bifurcation diagram hence the name.) In this scheme, a cortical 
net of N interacting netlets, each of which made of a large number (hundreds 
or thousands) of probabilistic neurons, can be simply modeled and simulated by 
a network of N parametrically coupled bifurcation processing elements. Earlier 
work (Farhat et al., 1995; Farhat et al., 1994), indicates that bifurcation PEs can 
be realized in analog hardware by an integrate and fire model neuron equipped 
with a dendritic tree when it is subjected to correlated spike trains at its dendrites 
that give rise to a periodic activation potential at its hillock. We may have there- 
fore available to us, for the first time, the means for modeling, simulating, and 
studying cortical networks both in software and hardware. What all this implies, 
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and can be quite remarkable, is that in simulation studies a net of N bifurcation 
PEs would effectively be equivalent to (102 to 103) x N cortical neurons. 

3.  Parametrically Coupled Network of Logistic PEs (The Logistic Net) 

The architecture of the logistic net, shown in Figure 1, consists of N paramet- 
rically coupled logistic PEs (parametrically driven logistic maps) described by 
Xi(n + 1) = Aii(n)Xi(n)[l - Xi(n)], where Mi(n) € [0,4], and X^n) G [0,1], 
i = l,2,...,N, together with N auxilliary "sensory" logistic maps described 
by Xf{n + \) = rfX?(n)[l - Xs {n)} with Mf € [0,4] and Xs G [0,1]. The 
sensory network is used to produce a wide range of spatio-temporal input pat- 
terns to drive the network. The network employs nonlinear activity dependent 
coupling functions between PEs as an abstraction of the possible occurrence of 
rapid activity dependent modulation of the coupling between netlets. 

To loosely incorporate this activity dependent coupling in the network of 
Figure 1 we use binned or quantized nonlinear coupling functions BS(X?) from 
the sensory elements to the PEs and Bij{Xj) between the processing logistic 
elements (the jth and ith elements) respectively. The step-like nature of these 
binned coupling functions illustrated in Figure 2 allows sudden changes in the 
coupling strengths between netlets as their activity, represented here by the state 
variable Xi(n) of the logistic PE, changes. The number of levels (steps) in 
the binned coupling functions is arbitrarily chosen to be 4. The use of binned 
coupling is found to lead to the emergence of clustering and to the avoidance 
of "fragmentation" in network activity. As seen in Figure 2, the binned coupling 
function B^Xj) for example is formed by the intersection of the horizontal lines 

A, T, C, G and the nonlinear function gij(Xj) = AXj 
ij, where Qj is a positive 

real constant that determines the shape of gtj{Xj) and therefore the location of 
the steps or breakpoints a, b, c. Similar rules apply to B- {Xs). 

The binned coupling functions Bf {Xs) and B^Xj) determine the value of 
the control parameter /j,i{n) of the ith PE in the network according to, 

1 -     N 

W(n) = eO|(n) + -^^Oii(n), (1) 
j=i 

where 0?(n) = Bs{X?{n)) and Oy(ra) = B^X^n)) with Xf{n) and Xj{n) 
being the state variables of the driven sensory and processing logistic maps 
respectively and e is a parameter controlling the relative effects of the extrinsic 
(sensory) and intrinsic (feedback) activity on m{n). The simulations presented 
here are for e = 0.5. 

We have carried out (Farhat et al., 1996) a numerical simulation of the logistic 
net of Figure 1 for iV = 100 under a variety of stimulus generating vectors JLS. 
Homogeneous binned coupling, i.e., C? = Cij = 0.5, i,j = 1,2, ...,N, was 
used because the emphasis was on studying how the network behaves under 
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Figure 1.   Parametrically coupled net of logistic processing elements (PEs) with binned 
(quantized) coupling functions. 

different types of sensory input patterns and not, in this paper, on adaptation and 
learning where CV, would be incrementally altered for example by a suitable 
adaptation algorithm to effect learning. In the simulations described here, all 
logistic PEs in the net were initiated from the same arbitrarily chosen initial state 
Xf(o) = -Xj(o) = 0.5. In Figure 1, ~X{n) is the state vector of the network and 
JIS is the input-generating vector. Note that depending on the nature of ~ßs (or 
its components jif) the network can be driven by coherent (periodic), partially 
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Figure 2. Nonlinear quantized (binned) coupling functions, (a) Bi{Xf) between the sensory 
logistic elements and the network's PEs, and (b) Btj(Xj) between PEs. 

coherent (partly periodic and partly chaotic), or chaotic input sequences (orbits) 
B?(X?(n)) = B?(n) = Ot(n). 

4.  Simulation Results 

In this section we summarize the results of numerical experiments carried out 
to date with the logistic net of Figure 1. To characterize the behavior of the 
parametrically coupled logistic net we have introduced the concept of limit-set- 
diagram (LSD). The LSD is a static representation of the state vector X(n) of 
the network, i.e., of the orbits Xi(n), i = 1,2,..., N, of the PEs. It is formed 
by entering the values -Xj(n) € [0,1] visited by the post-transient orbit above 
each integer point i = 1,2,..., N representing PE number taken as the abscissa 
of the diagram (see bottom row of Figure 3). The top row of Figure 3, shows 
three different input generating vectors ~ßs. Those in (a) and (b) produce coherent 
stimulus vectors Xf(n) and associated Bf(n) because none of the components 
Hf of the input generating vector are chaos inducing, i.e., pf < /J,C = 3.56. Here 
fic = 3.56 is the critical value of the control parameter of a logistic map above 
which chaos is permitted. In both (a) and (b) the inputs to the network, X-(n) 
or Bf(n), are therefore ordered and void of chaos. In (c) on the other hand ~ßs 

has chaos inducing components where /x? > 3.56. As a result, both Xf(n) and 
Bf(n) have few chaotic components (93 ^ i < 100) and the input to the network 
in this case is partially coherent. 

The LSDs associated with each of these inputs are given in the bottom row 
of Figure 3. All these are seen to exhibit clustering wherein the PEs cluster 
into groups of identical orbits. The LSDs in (a) and (b) represent instances of 
the network converging to a periodic attractor of period-m and low dimension 
Nc, where iVc < N is the number of clusters (Nc = 6 in (a) and 7VC = 7 in 
(b)). Analysis of individual orbits of the PEs revealed that all those belonging 
to the same cluster have synchronized orbits i.e., identical orbits. Each cluster 
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acts then as a single unit, i.e., like a "super-neuron". All six clusters are found 
to be phase-locked, in that they have distinct periodic orbits that are in fixed 
relative phase and of the same period - m. We found m = 4 in (a) and m = 8 
in (b). Convergence to a periodic attractor is sudden following an erratic orbit 
interval of, for example, 1700 iterations for the case in (b). During the transient 
period, the network searches its state space for a "loss-region" in which it can 
collapse into a low-dimensional periodic attractor compatible with the constraints 
on the network namely the applied input and the coupling functions matrix. 
Similar analysis of PE orbits for the case in (c) shows the orbits do not converge 
to a periodic attractor even after observation over few thousand iterations, but 
appear instead to converge to a strange attractor by virtue of the distinct structure 
of the LSD in (c). In the LSD in (c), there appear to be a total Nc = 10 
clusters out of which 8 consist of two or more PEs. Recall the input generating 
vector JIS in (c) had chaos inducing components for which //f > /zc = 3.56. 
All this seems to suggest that when the input generating vectors considered here 
produce incoherent or partially coherent input patterns our net never converges 
to a periodic attractor but seems to converge instead to a strange attractor. One is 
tempted to hypothesize that convergence to a periodic attractor in dynamical nets 
is synonymous with recognition and classification of the input; while convergence 
to a strange attractor indicates lack of recognition because the input pattern pre- 
sented to the net is not completely coherent (it contains incoherent (meaningless) 
components that do not correlate with other components of the feature vector 
(taken to be JIS), and this prevents the network from linking the various parts of 
the feature vector into a coherent unit manifested by the convergence to periodic 
attractor. Close examination of the orbits Xi(n) belonging to different clusters 
in this latter case shows they are not phase-locked because they do not exhibit 
any periodicity even over extended observation windows of 5000 iterations and 
more. This encourages us to suggest that phase-locking of clusters maybe used 
as mechanism of feature binding in dynamical networks such as the logistic net 
studied here. 

5.  Discussion 

Dynamical nets, like the logistic net discussed here, show behavior consistent 
with the general idea in several cortical oscillations theories (von der Marls- 
burg, 1981, 1986; Abeles, 1982), and with the discovery of long-range temporal- 
correlation in cortical activity in cat and monkey (Eckhorn et al., 1988; Gray, 
1989; Singer, 1993; Bosch et al., 1995; Engel et al., 1991(a), 1991(b); Murthy 
et al., 1992). At this stage of our work on dynamical nets we can make the 
following remarks that could be relevant to cortical dynamics and higher-level 
processing: 
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• Externally driven networks of parametrically coupled logistic processing ele- 
ments constitute a computationally efficient setting for the simulation and 
study of dynamical neural networks and dynamical computing. 

• Such networks compute with diverse attractors (point, periodic and chaotic 
(strange)) and are capable of bifurcating between attractors in the course of 
computation. 

• In dynamical networks, bifurcation which is a sudden qualitative change in 
network behavior as a result of change in a control parameter or input, is a 
source of diversification and innovation that can lead to new solutions. 

• Dynamical networks are capable of conducting transient chaotic search of 
their state space for attractors compatible with their input. 

• The nonlinear (quantized or binned) coupling between processing elements 
used here allows rapid changes in the coupling between PEs to take place. It 
is introduced to loosely reflect the possibility that coupling between netlets 
is activity dependent and can change abruptly. We also find that binned 
coupling prevents fragmentation where the number of clusters (groups of 
synchronized PEs) becomes very large. 

• The logistic network converges to a periodic attractor or to chaotic (strange) 
attractor depending on its input. When the input is coherent, the network col- 
lapses suddenly, following a transient search interval, to a low dimensional 
manifold, a periodic attractor associated with the particular input. When the 
input is incoherent or partially coherent it does not converge to a periodic 
attractor but seems to converge instead to a strange attractor. 

• The dimension of the periodic attractor equals the number of clusters Nc, 
and Nc < N. It is as if the network partitions itself into a small number of 
subpopulations (clusters) with all "PEs" within a cluster having exactly the 
same orbit, i.e., have synchronized orbits. The clusters are phase-locked and 
each cluster can be viewed as a "super neuron". 

• A small number of PEs (100 in the network simulated) can participate in a 
very large number of distinct convergent states depending on the constraints 
on the network (input and coupling between neurons). A relatively small net 
may be used therefore in the classification of a very large number of input 
patterns. 

• When the input is incoherent we observe clustering with synchronicity within 
a cluster, but the clusters are not phase-locked. 

• If we regard the input ~ps to the dynamical (logistic) net considered here as a 
feature vector generator, then when the feature vector is coherent, because ßs 

has no chaos inducing components, i.e. (the input to the network will consist 
of correlated or meaningful components (features)), the network would con- 
verge to a periodic attractor performing thereby a feature binding operation. 
When the input is incoherent or partially coherent, meaning the components 
of the feature vector are not compatible with one another, the network con- 
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verges to a chaotic or strange attractor. The logistic net studied is capable 
therefore of performing & feature-binding or feature-linking operation. 

• Coherence, phase-locking, and clustering of orbits provide the basis for a 
formalism for neuroholography (dynamic kinoform concept) because the 
state variable Xj(n) G [0,1], i = 1,2,..., N, of the network can be regarded 
as a normalized modulu 2ir phase variable. Note kinoform is the term used 
in optics to describe a phase-only hologram. 

• The form of the nonlinear coupling function between neurons, specifically 
the coupling factor Cy, permits study and exploration of learning algorithms 
for dynamical networks possibly based on information theoretic measures of 
the orbits Xi(n) like mutual information between orbits. 

As stated earlier, the logistic net described and studied here is similar to Kaneko's 
coupled map lattices (Kaneko, 1993; Crutchfield and Kaneko, 1987). There are 
however three significant differences. One is the nonlinear and global nature 
of the coupling used here, two is the use of parametric coupling rather than 
diffusive coupling and three is the provision of auxilliary sensory elements for 
generating complex spatio-temporal input signals. Such provision of extrinsic 
input capability extends the scope of modeling applications of parametrically 
coupled nets of logistic or, other bifurcation processing elements, beyond those 
listed above. For example, one can study the behavior of such nets when the 
parameter e in Equation (1) is made to slowly decay exponentially in time in order 
to pass the control over network dynamics from initially extrinsically dominated 
control to eventually completely intrinsic control. The effect of the extrinsic input 
in this scenario is to conduct the network to specific region of its state-space when 
all the while it is being gradually released to entirely intrinsic control. Such 
behavior maybe plausible in biological networks (Freeman, 1995) and may also 
be relevant to the development of learning algorithms for dynamical networks. 
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